Scientific journal
Научное обозрение. Медицинские науки
ISSN 2500-0780
ПИ №ФС77-57452

THE ADVANTAGE OF THERMOPLASTIC MATERIALS IN PROSTHETIC DENTISTRY

Tyan A.A. 1
1 Volgograd State medical university
Thermoplastics is one of many types of plastics are widely used in modern dental practice. Currently known 3 types of materials used to manufacture the denture, which have the property of elastic return. They largely superior to other materials used for the manufacture of dentures. Prostheses of thermoplastic materials have many advantages over the prostheses made of other materials including acrylic. Their use is a key element of quality of orthopedic treatment of patients with partial and complete absence of teeth. In a review article in more detail the advantages of thermoplastic materials: properties, types, indications for the manufacture of dentures. We explore the advantages of thermoplastic materials above the rest, which are used for the manufacture of dentures.
orthopedics
dentistry
thermoplastics

Термопласты – это один из множества видов пластмасс, которые переходят при нагревании в высокоэластическое состояние. В 1956 году общество по искусственным органам выделили из группы термопластов биологически нейтральные, иначе говоря «термопласты медицинской чистоты». Таким образом, данный материал стали изучать для возможности дальнейшего создания и применения искусственных структур и органов [1, 2, 4–7].

В 1975 году в Японии был создан комитет по искусственным органам. Также был разработан научно-исследовательский план работ по изучению структуры термопластов и реакции организма на его применение [3, 8–12].

Результаты исследовательской работы стали применять в клинике. Искусственные структуры стали постепенно вживлять в организм человека. Нейлон впервые был представлен в 1983 году, как пластик для изготовления основ зубных протезов, обладающий особыми свойствами гибкости. Предполагалось, что он заменит акриловые комбинации и металлические сплавы, которые используются в частичных съемных зубных протезах. С тех пор многие страны начали использовать данный материал [13–16].

Цель исследования: изучить преимущества термопластических материалов над остальными, которые применяются для изготовления съемных зубных протезов.

Наиболее распространенным конструкционным материалом в ортопедической стоматологии является акриловая пластмасса. Однако она способна вызвать аллергические реакции, проявляющиеся в виде воспаления слизистой оболочки полости рта [9]. Основным этиологическим фактором развития аллергии к акрилату считается остаточный мономер [24], содержащийся в пластмассе в количестве 0,2 %, которой при нарушении режима полимеризации увеличивается до 8 % [8, 9].

С 1938 года акриловая пластмасса заместила каучук, который применяли в качестве базиса много лет и по своим характеристикам акрилаты, естественно, превзошли старый материал.

Пластмассы – это полимеры, представляющие большую группу высокомолекулярных соединений, получаемых химическим путем из природных материалов или химическим синтезом из низкомолекулярных соединений. Одним из свойств полимеров является их высокая технологичность, способность при нагревании и давление формоваться и устойчиво сохранять приданную им форму [1].

Все пластмассы состоят из порошка и жидкости.

Жидкость: мономер – метилметакрилат – бесцветная, летучая жидкость с резким запахом, легко воспламеняется. Фасуется в непрозрачный сосуд с притертыми крышками и хранят в прохладном месте так как реакция самополимеризации может произойти под действием тепла, света и воздуха.

В состав мономера могут входить:

- катализатор;

- активатор;

- ингибитор, который замедляет процесс самополимеризации;

- сшивающий агент – повышает твердость, теплостойкость, понижает растворимость.

Порошок: полимер – полиметилметакрилат – твердое прозрачное вещество, полученное из мономера, воды и эмульгатора (крахмала).

В него вводятся:

- замутнители;

- красители;

- пластификаторы;

- инициаторы.

По типу мономерных звеньев пластмассы делятся на 2 класса (рис. 1) [5].

По пространственной структуре пластмассы подразделяют на:

- линейные полимеры – химически не связанные одиночные цепи монополимерных звеньев (целлюлоза, каучук);

- разветвленные полимеры, имеющие структуру, подобную крахмалу и гликогену;

- пространственные (сшитые) полимеры, построенные в основном как сополимеры (рис. 2).

tjn1.tif

Рис. 1. Деление пластмасс по типу мономерных звеньев

tjn2.tif

Рис. 2. Подразделение пластмасс по пространственной структуре [11]

Разветвленные и неразветвленные линейные полимеры легче растворяются в органических растворителях, плавятся без изменения основных свойств и при охлаждении затвердевают [15].

Так как пластмассами называют вещества органического происхождения с большой молекулярной массой, состоящие из смол, наполнителей и небольших добавок: пластификаторов и красителей, то в определенных условиях и сочетании эти полимерные материалы способны приобретать пластичность. В зависимости от реагирования на нагрев различают термопластичные (термопласты), термореактивные (реактопласты) и термостабильные пластмассы [8].

- Термопластичные (термопласты) высокомолекулярные соединения при нагревании постепенно приобретают возрастающую с повышением температуры пластичность, часто переходящую в вязкотекучее состояние, а при охлаждении вновь возвращаются в твердое упругое состояние. Это свойство не утрачивается и при многократном повторении процессов нагревания и охлаждения.

- Термореактивные (реактопласты) полимеры имеют сравнительно невысокую относительную молекулярную массу и при нагревании легко переходят в вязкотекучее состояние. С увеличением длительности действия повышенных температур термореактивные полимеры превращаются в твердую стеклообразную или резиноподобную массу и необратимо утрачивают способность вновь переходить в пластичное состояние. Это свойство объясняется тем, что переработка материала сопровождается химической реакцией образования полимера с сетчатой или пространственной структурой макромолекул.

- Термостабильные высокомолекулярные соединения при нагревании не переходят в пластичное состояние и сравнительно мало изменяются по физическим свойствам вплоть до температуры их термического разрушения [10].

Для изготовления базисов протезов используются пластмассы следующих типов:

- акриловые;

- винилакриловые;

- на основе модифицированного полистирола;

- сополимеры или смеси перечисленных пластмасс [19].

Все же существует перечень значительных минусов [6–11].

Пластмассы, применяемые в стоматологии для ортопедического лечения, являются высокополимерными органическими соединениями [15]. Они не имеют белковой природы и поэтому сами по себе не могут вызвать аллергию. Мономер – эфир метакриловой кислоты – является низкомолекулярным соединением, то есть это потенциальный гаптен, и, соединяясь с белками тканей организма, превращается в антиген. Его прямое токсическое действие на клетки слизистой рта, включая тучные клетки и базофилы, ведет к неспецифическому высвобождению гистамина, который способен модулировать аллергический ответ на воздействие причинно-значимыми аллергенами, тем самым вызывать явления аллергического контактного дерматита [5, 30].

Установлено, что мономер снижает титр лизоцима в слюне. Остаточный мономер, вымываемый из протезов, даже в незначительных количествах влияет на функциональное состояние нейтрофилов полости рта и подавляет их активность. По мнению ряда авторов, мономер является протоплазматическим ядом, чрезвычайно активен при контакте с тканями и способен оказывать раздражающее и токсическое действие на весь организм [13, 28].

Существенным недостатком протезов из акриловых пластмасс является микропористость базисов, которая неизбежно возникает по технологическим причинам, из-за усадки, происходящей в процессе полимеризации.

Третьим недостатком является малая прочность акриловых пластмасс к переменным нагрузкам при акте жевания [4].

Тем не менее, акриловые пластмассы во многих клиниках до сих пор являются часто единственным материалом для изготовления базисов съемных протезов, так как они недорогие, имеют простую технологию изготовления, не требуют дорогостоящего оборудования [20].

В последнее время на отечественном стоматологическом рынке появились новые технологии изготовления съемных ортопедических конструкций из термопластических материалов (термопластов), которые используются в мировой стоматологии уже более 20 лет. Общую характеристику термопластов определяет формулировка «материал, пластичный при нагреве», т.е. материалы пакуются в разогретом состоянии без применения мономеров [26].

Термопласты по химической структуре лишены тех основных отрицательных свойств, которые присущи акриловым пластмассам, а по прочностным показателям они во много раз лучше. При переработке термопластов в изделия не используется резкотоксичный мономер. Термопласты после разогрева при температуре от 160 до 200 °С приобретают вязкотекучее состояние и вводятся в заранее закрытую форму через литьевой канал под давлением до 50 атм [4].

В данный момент известно 3 вида материалов используемых для изготовления съемных зубных протезов, которые обладают свойством возвратной упругости. Это нейлоны, акрилополимеры- полиметилметакрилаты, химический класс – полиамиды и ацеталы – полиформальдегиды. Все эти вещества образованы различными химическими связями, обладают различной структурой и разными свойствами [17, 18]:

1. Материал обладает высокой точностью и однородностью благодаря горячему впрыску под давлением 12 атм.

2. Протезы полностью лишены остаточного мономера, следовательно не вызывают аллергических реакций.

3. Протезы эластичны и отличаются повышенной прочностью, поэтому не сломаются в обыденной эксплуатации.

4. Термопласты содержат устойчивый краситель, который придает протезам эстетичный вид, даже после длительной эксплуатации.

5. Изготовление протезов происходит методом горячего впрыска, поэтому они имеют точную посадку и стабильную фиксацию.

6. Протезы очень легкие.

7. При использовании протезов из термопластов невозможно расшатывание опорных зубов.

8. Отсутствие металлических кламмеров не приводит к неприятным ощущениям, связанным с ионным обменом (гальвонизм) [19–23].

Показания к изготовлению протезов из термопластических материалов:

1. Беззубая челюсть I тип по Шредеру (при наличии условий в полости рта);

2. Беззубая челюсть I тип по Келлеру (при наличии условий в полости рта);

3. Для пациентов, склонных к аллергии, хим-, фарм- и медработников;

4. Малые, средние, большие дефекты по Бетельману;

5. I – IV класс по Кеннеди;

6. При раннем удалении зубов у детей для предупреждения деформации зубных рядов;

7. При расщелине твердого и мягкого неба в качестве обтураторов;

8. При заболевании тканей пародонта в качестве шинирования;

9. Для пациентов с экзостозами, тонким, острым альвеолярным гребнем и др.;

10. При нависающем альвеолярном гребне, когда невозможно сделать акриловый протез [24–27].

Недостатки акриловых материалов по сравнению с термопластическими:

1. Находящийся в акриловых пластмассах мономер вызывает аллергические реакции общего и местного характера

2. Неустойчивость к переменным жевательным (механическим) нагрузкам. Переломы базисов в среднем составляют 80 % от числа изготовленных протезов.

3. Протезы имеют металлические кламмеры, что не эстетично и может вызвать повреждение опорных зубов и их расшатывание [28–30].

Выводы

Протезы из термопластических материалов имеют множество преимуществ над протезами изготовленных из других материалов в том числе и акрила. Их применение является ключевым звеном качественного ортопедического лечения пациента при частичном и полном отсутствии зубов.